Новый запуск андронного коллайдера. Большой адронный коллайдер начал новый сезон сбора научных данных Запуск коллайдера 15 мая время

С момента раскрытия информации о целях строительства, устройстве и схеме действия адронного коллайдера появлялась масса догадок о последствиях, к которым могут привести подобные исследования. Запуск коллайдера был точкой во времени, которая могла бы разделить историю на «до» и «после». Предугадать, как повела бы себя материя в неестественных для земных условий обстоятельствах, не могли даже светлейшие умы. Массу невероятных теорий и догадок породил большой адронный коллайдер, последние новости о котором можно найти в этом разделе.

Портал в другие миры

Один из успешных запусков коллайдера дал неожиданный результат, открыв портал в другой мир. В процессе столкновения частиц в небе над местом проведения эксперимента образовались облака необычного пунцового цвета, начался вихрь, напоминающий портал. Адронный коллайдер проектировался для контролируемого образования уменьшенных версий черных дыр путем столкновения протонов и ионов. Добились ли ученые своей цели или «портал» был всего лишь совпадением, доподлинно неизвестно.

Известно, что в ближайшем будущем появится адронный коллайдер в России , мощность которого в 100 раз будет превышать возможности первого проекта. Предварительные фото коллайдера, возводимого в РФ, потрясают своим масштабом. Сложно предугадать, к каким последствиям приведут опыты на новом БАК. Всем, кто интересуется исследованиями в области физики, рекомендуем посмотреть видео коллайдера в действии.

Данное событие знаменует собой начало очередного "сезона" работы коллайдера, которые следует за периодом технической остановки, длившегося в данном случае 17 недель. В течение прошлого месяца специалисты Европейской организации ядерных исследований CERN занимались завершением регламентных работ и обслуживания оборудования коллайдера, которые были начаты в декабре 2016 года. На прошедших выходных были выполнены окончательные проверки работоспособности каждого отдельного узла и всего коллайдера в целом, и 1 мая группа управления коллайдером осуществила его полноценный запуск.

Напомним нашим читателям, что Большой Адронный Коллайдер останавливается каждую зиму на своего рода "каникулы", в течение которых инженеры и обслуживающий персонал производят крупномасштабные ремонтные работы и работы по модернизации оборудования. Период "каникул" в этом году был длиннее, чем в предыдущих годах, что дало инженерам возможность произвести более сложные работы. К этим работам относится замена некоторых секций сверхпроводящих магнитов, установка нового поглотителя и устройства фокусировки в синхротроне Super Proton Synchrotron, замена достаточно большого количества электрических кабелей.

Произведенные за каникулы модернизации позволят коллайдеру вырабатывать лучи протонов большей яркости, что, в свою очередь, позволит ученым наблюдать за достаточно редкими процессами. "Нашей целью является достижение интегрированной яркости в 45 фемтобарнов^-1 (в прошлом году интегрированная яркость составляла 40 фемтобарнов^-1)" - рассказывает Ренде Штееренберг (Rende Steerenberg), глава группы, осуществляющей управление работой коллайдера, - "Яркость можно увеличить разными способами. Можно просто "загнать" больше лучей протонов в одну точку пространства, а можно и увеличить плотность одного луча. Эти два способа дают разные результаты по стабильности луча, и мы еще не знаем, какой из способов будет самым приемлемым".

В 2016 году коллайдер смог обеспечить стабильность лучей протонов, при которой становится возможным проведение экспериментов и сбор данных, в 49 процентах от общего времени работы ускорителя. А в позапрошлом году этот показатель составлял около 35 процентов. В ходе нынешнего этапа работы коллайдера исследователи планируют еще больше увеличить данный показатель.

В течение первых недель работы в недрах коллайдера будет циркулировать несколько лучей протонов, которые будут использоваться дли проверки работоспособности и калибровки оборудования. Затем количество протонов в ускорителе будет постепенно повышаться, пока их количества не станет достаточным для начала проведения первых столкновений и начала сбора научных данных.

Большой адронный коллайдер , сокращённо БАК (англ. Large Hadron Collider, сокращённо LHC) - ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов и изучения продуктов их соударений. Коллайдер построен в ЦЕРНе (Европейский совет ядерных исследований), находящемся около Женевы, на границе Швейцарии и Франции. БАК является самой крупной экспериментальной установкой в мире. В строительстве и исследованиях участвовали и участвуют более 10 тысяч учёных и инженеров более чем из 100 стран. «Большим» назван из-за своих размеров: длина основного кольца ускорителя составляет 26 659 м; «адронным» - из-за того, что он ускоряет адроны, то есть тяжёлые частицы, состоящие из кварков; «коллайдером» (англ. collider - сталкиватель) - из-за того, что пучки частиц ускоряются в противоположных направлениях и сталкиваются в специальных точках столкновения.

Положить конец существованию нашей планеты может запуск Большого андронного коллайдера с ускорителем Linac 4. Его ученые планируют включить 15 мая.

Как считают некоторые исследователи, завтрашний день может стать началом «Апокалипсиса». Специалисты отмечают, что эту дату ранее назвал и Папа римский Франциск.

Возможно, что именно запуск Большого андронного коллайдера был причиной визита президента США Дональда Трампа в Ватикан. Этот визит, уверены некоторые ученые, демонстрирует тревожность положения.

О том, что Большой андронный коллайдер может спровоцировать возникновение черной дыры предупреждал и Стивен Хокинг. Он считает, что эта черная дыра может поглотить не только Землю, но и всю Солнечную систему.

В CERN допускают, что Большой андронный коллайдер может открыть двери в параллельные миры. А вот какие последствия повлечет это, пока не готов сказать никто.

Специалисты отмечают, что уже сейчас при работе андронного коллайдера над Европой происходят различные аномальные явления. Они уверены, что даже при старом ускорители Linac 2 начинают происходить изменения на Земле. Когда же заработает Linac 4, ситуация может вообще выйти из-под контроля.

О том, что этот проект несет опасность нашей планете, говорили неоднократно и другие ученые. Знают о ней и физики, которые работают в этом проекте. Но они держат все в тайне, а любые попытки рассказать правду о Большом андронном колладейре, судя по всему, пресекаются.

Так, в минувшем году совершил самоубийство доктор Эдвард Мантилла. Он трудился в CERN, но перед смертью решил уничтожить все свои наработки, хранившиеся в памяти компьютера.

«Сегодня мы стоим на пороге величайшего открытия или все-таки конца мира? Что ж, завтра это будет известно, а пока мы можем только надеяться на лучшее, на Высшие силы, которые в очередной раз простят глупость человечества и не допустят Апокалипсиса на Земле», - написал он в своем посмертном письме.

В 2008 году был запущен один из самых дорогостоящих научных проектов мира — Большой Адронный Коллайдер. Мощность, потребляемая от сети, этого коллайдера просто невообразима – достаточно сказать, что Франция, по чьей территории проходит часть этого коллайдера (другая часть проходит по территории Швейцарии), предоставила в распоряжение физикам мощность одной из своих АЭС для работы.


Цена этой машины кажется фантастической – она составляет более 10 млрд.долларов. Строился же этот самый большой в мире коллайдер целых 24 года.

Родился БАК или, как его называют на Западе, LHC – Large Hadron Collider появилась в 1984 году. Строительство его началось почти сразу, еще до того момента, как в 1994 году Европейский Совет одобрил создание этого проекта (при такой стоимости сразу же стало очевидно, что ни одна страна в мире подобный ускоритель «не потянет», возможно только мировое сотрудничество). Длина LHC (эл-эйч-си) 26.7 километров и расположен он на месте предыдущего одного из самых больших мировых ускорителей – LEP (Large Lepton Collider). Из названия видно, что поменялся тип ускоряемых частиц. Если в LEP ускорялись электроны (одни из легчайших лептонов, т.е. частиц, участвующих в электромагнитном и слабом взаимодействиях), то в LHC будут ускоряться адроны, т.е. частицы, участвующие в сильном взаимодействии (протоны).


Всего в мире существует четыре типа взаимодействий: гравитационное, которое удерживает наши планеты на месте, сильное, которое удерживает как одно целое ядра атомов, электромагнитное, вызывающее притягивание полюсов магнита или зарядов разных знаков, и, наконец, слабое, которое вызывает распад частиц «самих по себе», что приводит, например, к существованию так называемой бета-радиоактивности, когда из распадающегося изотопа атома вылетает электрон или позитрон.

Энергия протонов LHC будет самой высокой в мире – 14 ТэВ (14 тераэлектрон вольт или 14 000 000 000 000 эВ) и сталкиваться они будут с ядрами свинца, которые в свою очередь будут разогнаны до энергии 5.5 ГэВ (5.5 гигаэлектронвольт или 5 500 000 000). Это на порядок больше, чем самый высокоэнергетичный ускоритель сегодняшнего дня — Тэватрон, который расположен в Национальной лаборатории им. Ферми в Брукхейвене (США).

LHC расположен чуть наклонно на естественной скальной плите, проходящей по территории Франции и Швейцарии. Это позволяет обеспечить высокую сейсмическую стабильность работы ускорителя, для выставки многотонных магнитов которого относительно друг друга требовалась точность лучше 5 микрон. Глубина туннеля 100 метров.

«Владельцем» LHC является Центр Европейских Ядерных Исследований (ЦЕРН или CERN от французского Conseil Européen pour la Recherche Nucléaire).

Слова «ускоритель» и «коллайдер» означают, что на данной установке будет реализован так называемый метод встречных пучков, разработанный в США и СССР одновременно. При этом первые пучки одного знака заряда – электрон-электронные впервые встретились в США, в то время как пучки разных знаков заряда, т.е. материя и антиматерия впервые встретились на ускорителе ВЭП-1, созданном в Институте Ядерной Физики в г.Новосибирске.


Суть метода в том, что пучок частиц «летает» со скоростью, всего лишь на миллионные и миллиардные доли отличающейся от скорости света, внутри ваккуумной камеры ускорителя и сталкиваются в одном месте. При этом вещество и антивещество аннигилируют, и их энергия полностью переходит в энергию для рождения новых частиц. Так изучается мир элементарных частиц. Позже оказалось, что можно встречать любые частицы одного типа (главное, чтобы они были заряженными) с любыми другими частицами (тоже заряженными). После этого начали ускорять протоны, антипротоны и просто ядра различных элементов, у которых полностью или частично «ободраны» электронные оболочки, так что остается только ядро атома.

Главная научная задача LHC и четырех его детекторов (тоже самых больших в мире) – поиск так называемых суперсимметричных частиц. Известно, что еще в начале 20 века была выдвинута гипотеза, что все четыре типа взаимодействия когда-то были едины (эта гипотеза называется теория единого поля), но, по мере остывания Вселенной, стали постепенно «расходиться» друг от друга так, что сейчас осталось четыре разных типа.

Уже доказано, что электромагнитное и слабое взаимодействия связаны между собой – об этом говорит так называемая теория Вайнберга-Салама, которая и описывает электрослабое взаимодействие. Существует и дальнейшая гипотеза (названная Стандартной Моделью) о том, что сильное взаимодействие объединено с электрослабым и именно этот факт призван доказать свежепостроенный ускоритель.

Вторая задача ускорителя – изучение частиц, содержащих так называемый «топ-кварк» (t-кварк). Если все вещество состоит из атомов, а те в свою очередь из ядра и электронов, то ядро состоит из нуклонов – протонов и нейтронов. Существуют и другие тяжелые частицы, похожие на протоны и нейтроны. Объединяет их то, что состоят они из шести типов кварков (и 6 антикварков им соответствующих). Самый тяжелый кварк до сих пор не поддавался изучению в силу того, что для его рождения у нас было недостаточно энергии. Существуют прогнозы того, что топ-кварк будет способствовать рождению так называемых Хиггсовских бозонов, которые и будут прямым подтверждением суперсимметричной теории и Стандартной Модели. Распад Хиггсовского бозона может подсказать направления дальнейшего исследования мира, в частности попытки объединения всех четырех взаимодействий в одно целое – состояние, которое было во Вселенной только в момент Большого Взрыва.

Третья задача ускорителя – изучение так называемой кварк-глюонной плазмы, т.е состояния, когда ядерное вещество практически слипается в один невероятно плотный и горячий комок. Понимание процессов, происходящих там, будут способствовать построению теории сильного взаимодействия, которой до сих пор не существует в удовлетворяющем физиков состоянии математической строгости. Это может существенно продвинуть нас в понимании как ядерных процессов и физики образования различных тяжелых элементов во Вселенной, так и астрофизических процессов.

Четвертая задача ускорителя – изучение фотон-фотонных столкновений. Дело тут вот в чем. Фотоны, наравне с электронами и позитронами, участвуют как в электромагнитных, так и в электрослабых взаимодействиях. При этом они не имеют заряда, поэтому оказываются как бы лучшими инструментами проникновения вглубь материи (они не испытывают отталкиваний или притяжений). В ситуации, когда начнут сталкиваться ядра и ядерная материя, поток фотонов будет чрезвычайно большим и это повысит их вероятность столкнуться со встречным таким же фотоном до измеряемых величин. Мы сможем изучать как взаимодействия фотонов с адронами, так и взаимодействия самих фотонов высокой энергии друг с другом, что до сих пор также не поддавалось изучению из-за низкой вероятности взаимодействия и трудностей получения высокоэнергетических плотных пучков фотонов.

Еще одна задача коллайдера – экзотические процессы, в том числе и рождение микроскопических черных дыр, которые не несут никакой угрозы миру, вопреки предсказаниям дилетантов разных мастей. Дело в том, что существующие гипотезы об объединении всех четырех взаимодействий предсказывают, что, если черная дыра может образоваться в подобном столкновении, то она тоже распадется (и прекратит свое существование), породив огромный поток частиц. Его можно пробовать искать и наблюдать и, если что-то похожее увидят детекторы, можно будет сделать какие-то выводы в пользу тех или иных гипотез теории единого поля.

Для обработки данных, которые будут поступать с четырех детекторов пришлось придумать новый протокол обмена данными (как когда-то в аналогичной задаче на LEP пришлось придумать протокол http) и распределенную вычислительную сеть LCG (LHC Computing GRID). Информация пойдет по почти 100 млн. каналам данных, что дает невозможность прямой обработки данных. На все эти события накладываются несколько «масок», т.е. требований на одновременное свершение нескольких действий (например, нас интересуют все события, где появилось четыре трека из центра и два – насквозь детектора), остальные отбрасываются. Такая обработка называется триггерной и триггер детекторов LHC будет состоять из 3-4 ступеней. Обработка данных на последней, уже оффлайновой ступени будет идти не только на тысячах компьютеров ЦЕРНа, связанных в одну цепь, но и на машинах многих научных центров мира. Это и называется распределенная вычислительная сеть (GRID), которая уже будет объединять десятки тысяч машин по всему миру (это потребовало создание нового протокола обмена данными и так называемого «Интернета-2»).

СМИ не определились, ждет планету уничтожение или вторжение демонов

Ряд средств массовой информации в очередной раз облетела новость, что физики, работающие в Европейской организации по ядерным исследованиям, своими экспериментами, касающимися Большого адронного коллайдера уже в самое ближайшее время спровоцируют конец света. При этом апокалипсис, по версии СМИ, должен принять форму огромной черной дыры, которая засосет нашу галактику, или же нашествия демонов из параллельных миров.

Согласно распространяющемуся слуху, чёрная дыра или таинственный портал должны появиться в результате запуска нового ускорителя частиц. В некоторых СМИ даже содержатся утверждения, что учёные хотят открыть портал в параллельные миры намеренно. Естественно, на официальном сайте CERN и в научных изданиях информации такого рода не содержится.

По всей вероятности, речь в сообщениях идёт о под названием LINAC-4. Напомним, многие его элементы были разработаны и изготовлены российскими специалистами, а также в его разработке принимали участие учёные из ряда европейских стран. Новая установка, как ожидается, позволит значительно увеличить производительность Большого адронного коллайдера. Запущен LINAC-4 был 9 мая, пусть в некоторых сообщениях упоминается, что работать он должен начать сегодня.

Слухи о том, что испытания мощного ускорителя частиц чреваты глобальным катаклизмом, время от времени звучат с начала века, когда началось строительство Большого адронного коллайдера. Впрочем, серьёзные специалисты относятся к подобным сообщениям весьма скептически. На данный момент все открытия, совершённые с помощью БАК, представляют собой пусть весьма любопытные, особенно для учёных, но ни в коей мере не мистические явления. Наиболее значимым из достижений, полученных с помощью коллайдера, остаётся открытие бозона Хиггса - частицы, предсказанной шотландским физиком Питером Хиггсом в 1964 году в рамках Стандартной модели и долгое время представлявшего собой нечто вроде её «недостающего элемента. Зафиксировать бозон удалось в 2012 году.

В исследованиях, проводимых с помощью коллайдера, за время его существования приняли участие более 10 тысяч учёных и инженеров из 100 с лишним стран.

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: